
Development environments made easy
QC-LUG - 14 Jan 15

INTRODUCTION

• Chad Darnielle
• Email: cdarn@netins.net

• Started working with Linux starting with Red Hat 6.0
Hedwig (26 Apr 1999), kernel 2.2.5-15

• UNIX/Linux system administrator at a Global Fortune
500 company

mailto:cdarn@netins.net

WHY VAGRANT?
• Vagrant is computer software for creating and

configuring virtual development environments. It can be
seen as a wrapper around virtualization software such as
VirtualBox, KVM, VMware and around configuration
management software such as Ansible, Chef, Salt, or
Puppet.

Wikipedia

Preferred way to work on a web application?

WHY VAGRANT?

• Install and configure all of the software you need (e.g.,
Apache, PHP, MySQL, etc.)on your local development
machine

Old Way

• Multiple projects could be handled easily via virtual hosts
and database isolation

• Modern web applications have a lot more moving parts,
technology choices, and complexity

New Way

Preferred way to work on a web application?

WHY VAGRANT?

• New dynamic languages like JavaScript, Python, and Ruby
New Way

• New database choices like MySQL, PostgreSQL, Redis,
Riak, Cassandra, etc.

• Additional considerations (e.g., multiple web servers,
application servers , and back-end services) like Apache,
Nginx, Unicorn, Thin, RabbitMQ, Solr, etc.

WHY VAGRANT?

• Keeping all of these technology combinations installed &
properly configured quickly gets out of hand

Problems with continuing with the Old Way

• Software installs were often done manually. Some of the
software is not trivial to install especially on Mac OS X
and Windows if even available

• Configuration is difficult. Developers unlikely to know
how production is configured. Misconfigured software
can lead to functionality that works locally but not in
production

WHY VAGRANT?

• Multiple projects are difficult to impossible because each
project requires slightly different configurations or
require completely different backend systems. The result
is brittle setup of poorly configured dependencies or
systems that run a lot of services that aren’t necessary
for individual web applications

Problems with continuing with the Old Way

• Difficult to keep development environments in sync with
other team members or bring new team members on
board because everyone has a separate environment.
Result is confusion and long onboarding times

WHY VAGRANT?

• Difficult for multiple developers to use different
operating systems. Some server software is very difficult
or impossible to run on certain operating systems.

Problems with continuing with the Old Way

PROJECT INFORMATION
• Original author Mitchell Hashimoto
• Written in ruby programming language
• MIT license

• Current stable release - 1.7.2 January 2015

https://github.com/mitchellh/vagrant/blob/master/CHANGELOG.md

• Initial release - 0.1.0 March 2010

• 1.0 March 2012

• October 2010 Engine Yard announced sponsorship of
the project

• Get full change history and project milestones below

• Multiple providers and provisioners
• Supports plugins

https://github.com/mitchellh/vagrant/blob/master/CHANGELOG.md

THE TAO OF VAGRANT
• In the world of Vagrant, developers check out repository

from a version control, run vagrant up, and have a full
development environment with no human interactions

• Developers continue to work on their own machines
with their own editors, browsers, and other tools

• Vagrant should be transparent and should match
production as much as possible

• If something goes wrong or they want to start over from
a clean state you run vagrant destroy, then vagrant up

• At the end of the day, Vagrant can suspend, halt, or
destroy the development environment keeping the
overall system clean.

THE TERMINOLOGY OF
VAGRANT

• Providers - Virtualization technology (VirtualBox,
VMware[_desktop|_fusion], Docker, Hyper-V, AWS, etc.)

• Provisioners - Software that sets up the Vagrant VM
(Shell scripts, Chef, Puppet, Ansible, Salt, etc.)

• Boxes - Base images upon which Vagrant environments
are built

GETTING STARTED

• Avoid the VirtualBox / hardware pitfall!
• VirtualBox requires VT-x or AMD-V CPU

instructions if you are going to run x86_64
BOXES on top of a x86_64 host

• Recommended provider: VirtualBox because it’s free
and it’s the most widely used provider

• VirtualBox & Vagrant run on Windows, Linux, and OS X

• Vagrant - https://www.vagrantup.com/downloads.html
• VirtualBox - https://www.virtualbox.org/wiki/Downloads

• VMware provider requires a license ($79)

https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads

DEMO TIME

• https://docs.vagrantup.com/v2/getting-started/

• Setup a project
• Install a BOX
• Connect to the BOX via SSH
• Synced Folders
• Provisioning via SHELL script
• Networking
• Share via HASHICORP ATLAS
• Teardown
• Rebuild

Overview

https://docs.vagrantup.com/v2/getting-started/

WRAPPING UP
• Main website

http://vagrantup.com
• GitHub

https://github.com/mitchellh/vagrant
• Discover Vagrant Boxes

https://atlas.hashicorp.com/boxes/search
• Google Group

http://groups.google.com/group/vagrant-up
• IRC

#vagrant on Freenode
• O’Reilly book - Vagrant: Up and Running

Print ISBN: 978-1-4493-3583-0| ISBN 10:1-4493-3583-7
Ebook ISBN:978-1-4493-3582-3| ISBN 10:1-4493-3582-9

http://vagrantup.com
https://github.com/mitchellh/vagrant
https://atlas.hashicorp.com/boxes/search
http://groups.google.com/group/vagrant-up

WRAPPING UP
• Veewee

https://github.com/jedi4ever/veewee

https://github.com/jedi4ever/veewee

