
QCLUG
Consul by HashiCorp

  Service Mesh (AKA Service Discovery)

Made faithfully in 
LibreOffice and 
Presented by 
Aaron Johnson



● What is Consul?
– Consul is a distributed, highly available, and data 

center aware solution to connect and configure 
applications across dynamic, distributed infrastructure.

– Consul is a tool for service discovery and 
configuration. Consul is distributed, highly available, 
and extremely scalable.

– Consul is a distributed service mesh to connect, 
secure, and configure services across any runtime 
platform and public or private cloud

Introduction



● What does that mean?
– Simply put it means that you can put service 

information into consul and get service information 
out of consul

– It also has a distributed key/value store that you can 
use as well but this is not the primary purpose of 
consul

– Also IMO consul exists primarily as a supporting 
tool for other HashiCorp tools such as Nomad and 
Vault

Introduction continued...



● Note: The consul specific steps are mostly taken from the getting 
started installation steps located here:

https://learn.hashicorp.com/consul/getting-started/install

● Create 3 VMs

# yum update -y && yum install -y bind-utils unzip wget vim

# cd && wget 
https://releases.hashicorp.com/consul/1.5.0/consul_1.5.0_linux_amd64
.zip

● Since consul is a single binary simply download and extract the zip 
file into /usr/local/bin

# cd /usr/local/bin && unzip ~/consul*.zip

Installation

https://learn.hashicorp.com/consul/getting-started/install


● The Consul agent can be ran in either server or client mode.
– For production 3-5 servers is recommended to avoid 

dataloss/outage
– All other agents will run in client mode which will:

● Register "services"
● Run health checks
● Forward queries to consul servers

– For testing purposes you can start the consul agent "server" in 
development mode (no redundancy and less configuration 
required)

   # consul agent -dev

– If you run consul members to see a list of members of the 
cluster only one will be displayed currently

consul agent



● The default installation does not define how to start/stop consul.
● If deploying consul on traditional VMs one option would be to use 

systemd
[Unit]

Description=Consul Daemon

After=network.target

[Service]

User=root

Group=root

ExecStart=/usr/local/bin/consul agent -config-dir=/etc/consul.d

[Install]

WantedBy=multi-user.target

consul agent with systemd



● HTTP API

– https://www.consul.io/api/index.html

– Note: The output of the consul members command is eventually consistent 
due to it using the gossip protocol...

– https://www.consul.io/docs/internals/gossip.html

– You can actually get a strongly consistent view of the cluster members using 
the HTTP API instead

 # curl localhost:8500/v1/catalog/nodes

● DNS interface

– https://www.consul.io/docs/agent/dns.html

– Consul can be queried using the DNS protocol on port 8600

 # dig @127.0.0.1 -p 8600 consul-2gb-nbg1-1

● Web UI

– Listens on port 8500 if you pass -ui via the cli or ui: true in 
consul.json 

Interfaces

https://www.consul.io/api/index.html
https://www.consul.io/docs/internals/gossip.html
https://www.consul.io/docs/agent/dns.html


# mkdir /etc/consul.d

# vim /etc/consul.d/web.json

{

  "service": {

    "name": "web",

    "tags": ["rails"],

    "port": 80

  }

}

● Restart the development agent like this:

  # /usr/local/bin/consul agent -dev -config-dir=/etc/consul.d
● Query the service using the DNS interface (Both A and SRV records are available)

  # dig @127.0.0.1 -p 8600 web.service.consul

  # dig @127.0.0.1 -p 8600 web.service.consul SRV
● The SRV record tells you what port the service is listening on (80 in this case)
● You can even use the DNS interface to filter by tags:

  # dig @127.0.0.1 -p 8600 rails.web.service.consul
● Or you can query the service using the HTTP API

  # curl http://localhost:8500/v1/catalog/service/web

Defining a Service



● Skip the section on consul Connect and Intentions...
● Configure the first node as a server:

  # mkdir -p /var/lib/consul/data

  # vim /etc/consul.d/consul.json

{

  "datacenter": "production",

  "server": true,

  "ui": true,

  "bootstrap_expect": 1,

  "bind_addr": "159.69.4.237",

  "enable_script_checks": true,

  "data_dir": "/var/lib/consul/data"

}
● Start the consul agent in server mode

  # consul agent -config-dir=/etc/consul.d

consul server + client



● Configure the second node as a client:
● Install consul
● Ensure the second node hostname is unique or override with node_name in consul.json

  # mkdir /etc/consul.d

  # mkdir -p /var/lib/consul/data

  # vim /etc/consul.d/consul.json

{

  "datacenter": "production",

  "server": false,

  "bind_addr": "195.201.118.249",

  "enable_script_checks": true,

  "data_dir": "/var/lib/consul/data",

  "retry_join": ["159.69.4.237"]

}

● Start the consul agent in client mode (Note: retry_join will make the agent auto join)

  # consul agent -config-dir=/etc/consul.d

● Running consul members should now show both nodes when ran from either node

consul server + client



● If you value your data you should follow these steps, but rather than 2 servers deploy at least 3...
● Set up a server identical to the first server except set bootstrap_expect to 2 on both servers (or 

for however many servers as you expect to have...)
● Also you should add retry_join to each server as well

  # vim /etc/consul.d/consul.json

{

  "datacenter": "production",

  "server": true,

  "ui": true,

  "bootstrap_expect": 2,

  "bind_addr": "159.69.4.237",

  "enable_script_checks": true,

  "data_dir": "/var/lib/consul/data",

  "retry_join": ["159.69.4.237"]

}
● Start the consul agent in server mode

  # consul agent -config-dir=/etc/consul.d

● Now all three nodes should be listed in consul members command output

multi-server consul cluster



● Service discovery is great but how should I use 
this?
– Monitoring (prometheus – future meeting topic?)
– Service publishing via kubernetes or HashiCorp 

Nomad?
– Elimination of application DNS dependency, however if 

you still need DNS for your application consul has you 
covered.

– Also HashiCorp vault uses consul’s key/value store so if 
you plan to use vault you may want consul.

Next Steps



Questions


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

